Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Engineering Mathematics - III**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Obtain Fourier series expansion of f(x) = |x| in the intercal $(-\pi, \pi)$ and hence deduce

$$\pi^{2}/8 = \sum_{1}^{\infty} \frac{1}{(2n-1)^{2}}.$$

(08 Marks)

b. Obtain half range cosine series of

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

(08 Marks)

a. Obtain Fourier series expansion of

$$f(x) = \frac{\pi - x}{2}, 0 \le x \le 2\pi.$$

(06 Marks)

b. Obtain half range sine series of $f(x) = x^2$ in the interval $(0, \pi)$.

(05 Marks)

Obtain the Fourier series for the following function neglecting the terms higher than first harmonic. (05 Marks)

x:	0	1	2	3	4	5
у:	9	18	24	28	26	20

Module-2

1-|x|, $|x| \le 1$ and hence deduce $\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}.$ a. Find the Fourier transform of f(x) =

b. Find the Fourier sine transform of

(05 Marks)

(06 Marks)

c. Find the Inverse Z - transform of

$$\frac{8z^2}{(2z-1)(4z-1)}$$

(05 Marks)

OR

Find the Fourier Cosine transform of

$$f(x) = \begin{cases} 4x, & 0 < x < 1 \\ 4 - x, & 1 < x < 4 \\ 0, & x > 4 \end{cases}$$

(05 Marks)

b. Find the Z – transform of i) $\sinh n\theta$ ii) n^2 .

(06 Marks) (05 Marks)

Solve the difference equation : $U_{n+2} - 5 U_{n+1} + 6U_n = 2$, $U_0 = 3$, $U_1 = 7$.

5 a. Compute the coefficient of correlation and the equation of lines of regression for the data.

X	1	2	3	4	5	6	7
v	9	8	10	12	11	13	14

(06 Marks)

b. Fit a second degree parabola $y = ax^2 + bx + c$ for the following data:

x	0	1	2	3	4	5	6
v	14	18	27	29	36	40	46

(05 Marks)

c. Using Newton Raphson method, find a real root of x sin x + \cos x = 0 near x = π , corrected to four decimal places. (05 Marks)

OR

6 a. Obtain the lines of regression and hence find coefficient of correlation for the following data

X	1	2	.3	94	5
V	2	5	3	8	7

(06 Marks)

b. By the method of Least square, find a straight line that best fits the following data:

X	65	10	15	20	25
V	16	19	23	26	30

(05 Marks)

c. Using Regula – Falsi method to find a real root of $x \log_{10} x - 1.2 = 0$, carry out 3-iterations. (05 Marks)

Module-4

7 a. Find the interpolating formula f(x), satisfying f(0) = 0, f(2) = 4, f(4) = 56, f(6) = 204, f(8) = 496, f(10) = 980 and hence find f(3).

b. Use Newton's divided difference formula to find f(9), given

X	5	27	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by applying Simpson's $\frac{3}{8}$ th rule, taking 7 ordinates. (05 Marks)

OR

8 a. Using Newton's backward interpolation formula, find f(105), given

X	80	85	90	95	100
f(x)	5026	5674	6362	7088	7854

(06 Marks)

b. Apply Lagrange formula to find root of the equation f(x) = 0, given f(30) = -30, f(34) = -13, f(38) = 3 and f(42) = 18.

(05 Marks)

c. Evaluate $\int_{0}^{0.3} \sqrt{1-8x^3} dx$, taking 6 – equal strips by applying Weddle's rule. (05 Marks)

- a. If $\vec{F} = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int \vec{F} d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve given by x = t, $y = t^2$, $z = t^3$. (06 Marks)
 - b. Find the extremal of the functional \int $-2y\sin x)dx, y(0)$ (05 Marks)
 - Prove that geodesics on a plane are straight lines. (05 Marks)

- Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ with the help of Green's theorem 10 (06 Marks) in a plane.
 - b. Verify Stoke's theorem for $\vec{F} = yi + zj + xk$. Where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is it boundary.
 - c. A heavy chain hangs freely under the gravity between two fixed points. Show that the shape of the chain is a Catenary. (05 Marks)

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Digital Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Write the following equation in proper canonical form:
 - (i P = f(a, b, c) = ab + ab + bc

T = f(a, b, c) = (a + b).(b + c)

(06 Marks)

- b. Find all the prime-implicant and essential prime implicant for the given function.
 - $D = f(a, b, c, d) = \sum_{m} (6, 7, 9, 10, 13) + \sum_{d} (1, 4, 5, 11, 15)$ using K-map and draw the logic diagram.
 - ii) $P = \pi_m(0, 1, 2, 3, 7, 8, 10, 11, 15)$. $\pi_d(9, 14)$ using K-map and draw the logic diagram. (10 Marks)

- Simplify the following three-variable equation using K-map. List all the prime-implicant and essential prime implicants. $J = F(x, y, z) = \sum (0, 2, 3, 4, 5, 7)$ (04 Marks)
 - b. Find all the prime implicant and essential prime implicant of the function $S = f(a, b, c, d) = \sum (1, 3, 13, 15) + \sum_{d} (8, 9, 10, 11)$ using Quine-McClusky's algorithm. Draw the logic diagram. (12 Marks)

Module-2

Implement the following multiple output function using 74LS138 3:8 decoder and external

 $F_1(A, B, C) = \sum_{m} (1, 4, 5, 7)$ $F_2(A, B, C) = \pi_m(2, 3, 6, 7)$

(06 Marks)

- b. What do you mean by priority encoder? Explain 8 to 3 encoder, with highest number having the highest priority with the help of a truth table. (No need of logic circuit). (06 Marks)
- c. Design a 1-bit comparator using logic gates.

(04 Marks)

4 a. Implement full-Adder using 4:1 Multiplexer.

b. Design a 4-bit ripple parallel adder using full adder-blocks.

(06 Marks) (05 Marks)

c. Design a full-subtractor using logic gates.

(05 Marks)

Module-3

Explain the working of switch debouncer using SR latch.

(06 Marks)

Obtain the characteristic equation of i)SR flip-flops ii) JK flip-flops.

(04 Marks)

e. Explain clocked SR flip-flop using NAND gates.

(06 Marks)

2. Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

OR

- 6 a. Explain the working of Master-Slave JK flip-flop with functional table and timing diagram.

 Show how race around condition is overcome. (12 Marks)
 - b. What is meant by triggering of flip-flops? Name the different triggering methods. (04 Marks)

Module-4

- 7 a. Explain the different types of shift register SISO, PISO, SIPO, PIPO with relevant circuit diagram. (10 Marks)
 - b. Design 4-bit asynchronous down counter and explain, using negative edge triggered JK flip flops. (06 Marks)

OR

- 8 a. Design synchronous MOD-8 counter using clocked JK flip-flops. (08 Marks)
 - b. Design synchronous MOD-6 counter using clocked T-flip-flops. (08 Marks)

Module-5

- 9 a. Explain the Mealy model and Moore model of a clocked synchronous sequential network.

 (08 Marks)
 - Design a clocked sequential circuit that operates according to the state diagram shown in Fig.9(b). Implement the circuit using D-flip-flop. (08 Marks)

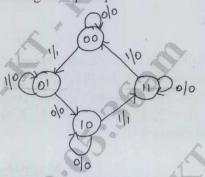


Fig.9(b)

OR

- 10 a. Give recommended steps for the design of a clocked synchronous sequential networks.
 - b. Design a synchronous counter using JK flip-flops to count the sequence 0, 1, 2, 4, 5, 6, 0, 1, 2. Use state diagram and state table. (10 Marks)

Third Semester B.E. Degree Examination, Jan./Feb.2021 Network Analysis

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the terms with an example,
 - (i) Linear and non linear elements.
 - (ii) Lumped and distributed elements.
 - (iii) Unilateral and Bilateral elements.
 - (iv) Active and Passive elements.

(08 Marks)

b. Find the current in 28 Ω resistor using mesh analysis in Fig. Q1 (b).

(08 Marks)

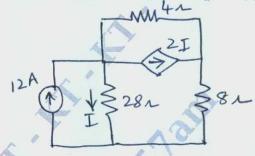


Fig. Q1 (b)

OR

2 a. Reduce the network in Fig. Q2 (a) to a single voltage source in series with a resistance using source shift and source transformation.

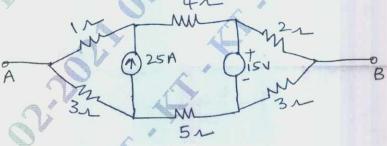


Fig. Q2 (a)

(08 Marks)

b. The node voltage equations of a network are,

$$\left[\frac{1}{5} + \frac{1}{j2} + \frac{1}{4}\right] V_1 - \frac{1}{4} V_2 = \frac{50 \angle 0^0}{5}$$

and

$$-\frac{1}{4}V_{1} + \left[\frac{1}{4} + \frac{1}{-2i} + \frac{1}{2}\right]V_{2} = \frac{50\angle 90^{0}}{2}$$

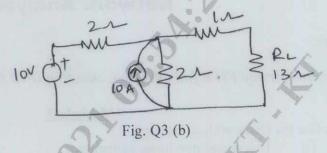
Derive the network.

(08 Marks)

3 a. State and prove superposition theorem.

(08 Marks)

b. For the circuit shown in fig. Q3 (b), find the current through R_L using Thevenins theorem.
(08 Marks)

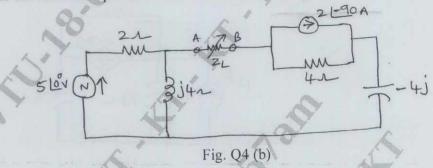


OR

4 a. State and prove Millers theorem.

(08 Marks)

b. Find the value of Z_L for which power transferred to the load is maximum and also determine the maximum power for the circuit shown in Fig. Q4 (b). (08 Marks)



Module-3

5 a. In the circuit of Fig. Q5 (a). Switch K is opened at t = 0. Find the value of V, $\frac{dV}{dt}$ and $\frac{d^2V}{dt^2}$ at $t = 0^+$.

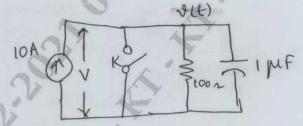
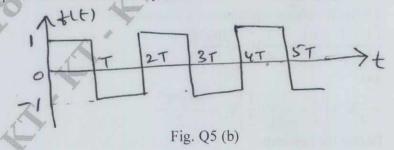


Fig. Q5 (a)

b. Obtain the Laplace transform of the square wave shown in Fig. Q5 (b).

(08 Marks)

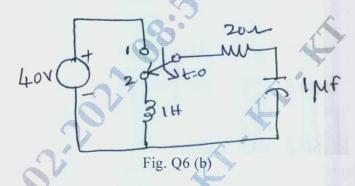


6 a. State and prove initial value and final value theorem.

(08 Marks)

b. For the network shown in Fig. Q6 (b) the switch is moved from position 1 to position 2 at t = 0 the steady state has been reached before switching. Calculate i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$.

(08 Marks)



Module-4

- 7 a. Define the following terms:
 - (i) Resonance
 - (ii) Q-factor
 - (iii) Bandwidth
 - (iv) Selectivity.

(04 Marks)

- b. Derive an expression for frequency of resonance of a parallel resonant circuit containing resistance in both the branches.

 (06 Marks)
- c. It is required that a series RLC circuit should resonate at 500 kHz. Determine the values of R, L and C if the bandwidth of the circuit is 10 kHz and its impedence is 100 Ω at resonance. Also find the voltages across L and C at resonance if the applied voltage is 75 volts.
 (06 Marks)

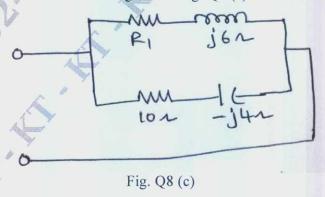
OR

- 8 a. Show that a two branch parallel resonant circuit is resonant at all the frequencies if $R_L = R_C = \sqrt{\frac{L}{C}}$ where $R_L =$ Resistance in the inductor branch, $R_C =$ Resistance in the capacitor branch. (06 Marks)
 - b. Give the comparison between series and parallel resonance.

(04 Marks)

c. Find the value of R₁ such that the circuit given in Fig. Q8 (c) is resonant.

(06 Marks)



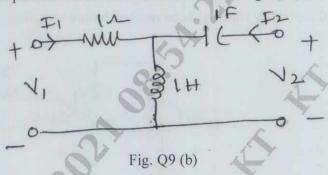
3 of 4

9 a. Express Y parameters in terms of Z and T parameters.

(08 Marks)

b. Find the transmission parameters for the network shown in Fig. Q9 (b).

(08 Marks)



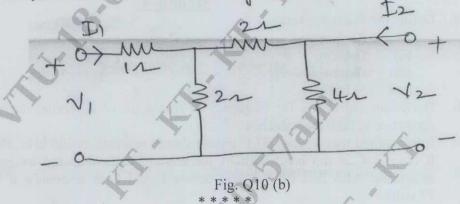
OR

10 a. Express ABCD parameters in terms of Y and h parameters.

(08 Marks)

b. Find the h parameters of the network shown in Fig. Q10 (b).

(08 Marks)



CBCS SCHEME

USN						160	15EC36

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. A charge $Q_A = -20 \mu C$ is located at A(-6, 4, 7) and a charge $Q_B = 50 \mu C$ is located at B(5, 8, -2) in free space. If distances are given in meters, find the vector force exerted on Q_A by Q_B .
 - b. A charge of -0.3 μC is located at A(25, -30, 15) (in cm) and a second charge of 0.5 μC is located at B(-10, 8, 12) cm. Find Electric field intensity (E) at
 (i) the origin (ii) P(15, 20, 50,)cm.
 - c. Define electric flux density.

(08 Marks) (02 Marks)

OR

- 2 a. Calculate the total charge within the universe of $\rho_v = \frac{e^{-2r}}{r^2}$. (04 Marks)
 - b. Infinite uniform line charges of 5 nC/m lie along the (positive and negative) x and y axes in free space. Find Electric field intensity (E) at P_A(0, 0, 4) (04 Marks)
 - c. Calculate Electric flux Density (D) in rectangular coordinates at point P(2, -3, 6) produced by
 - (i) a point charge QA = 55 mC at Q(-2, 3, -6);
 - (ii) a uniform line charge $\rho_{LB} = 20$ mC/m on the x-axis.

(08 Marks)

Module-2

a. State and explain Gauss law in electrostatics.

(04 Marks)

- b. Derive the expression for electric field intensity due to an infinite line charge using Gauss law.

 (04 Marks)
- c. In the region of free space that includes the volume 2 < x, y, z < 3, $D = \frac{2}{z^2} (yza_x + xza_y 2xya_z) c/m^2.$
 - (i) Evaluate the volume integral side of the divergence theorem for the volume defines here.
 - (ii) Evaluate surface integral side for the corresponding closed surface. (08 Marks)

OR

4 a. Derive an expression for continuity equation in point form.

(04 Marks)

b. If $\hat{E} = 120$ a_p V/m, find the incremental amount of work done in moving a 50 μ C charge a distance of 2 mm from (i) P(1, 2, 3) toward Q(2, 1, 4) (ii) Q(2, 1, 4) toward P(1, 2, 3).

(05 Marks)

- Current density is given in cylindrical coordinates as $J = -10^6 z^{1.5} a^z A/m^2$ in the region $0 \le \rho \le 20 \mu m$; for $\rho \ge 20 \mu m$ J = 0.
 - (i) Find the total current crossing the surface z = 0.1 m in the a_z direction.
 - (ii) If the charge velocity is 2×10^6 m/s at z = 0.1m, find ρ_v (volume charge density).

(07 Marks)

- Starting from Gauss law, derive Poisson's and Laplace's equation. (04 Marks)
 - Calculate numerical value for potential V and volume charge density $\rho_{\rm v}$ at P 3, $V = 5\rho^2 \cos 2\phi$. (06 Marks)

c. Given the spherically symmetric potential field in free space, $V = V_0 e^{-r/a}$, find: (i) ρ_v at r = a (ii) the electric field at r = a (iii) total charge. (06 Marks)

- State and explain Ampere's law. (04 Marks)
 - b. Evaluate both sides of Stoke's theorem for the field $H = 10 \sin \theta a_{\perp}$ and the surface r = 3, $0 \le \theta \le 90^{\circ}$, $0 \le \phi \le 90^{\circ}$. Let the surface have the a_r direction. (06 Marks)
 - c. Using the concept of vector magnetic potential, find the magnetic flux density at a point due to long straight filamentary conductor carrying current 'I' in the az direction. (06 Marks)

Module-4

- Derive an expression for the force on a differential current element placed in a magnetic
 - b. A point charge for which $Q = 2 \times 10^{-16}$ C and $m = 5 \times 10^{-26}$ kg is moving in the combined fields $E = 100 a_x - 200 a_y + 300 a_z V/m$ and $B = -3a_x + 2a_y - a_z mT$. If the charge velocity at t = 0 is V(0). $V(0) = (2a_x - 3a_y - 4a_z)10^5$ m/s.
 - Give the unit vector showing the direction in which the charge is accelerating at t = 0.
 - (ii) Find the kinetic energy of the charge at t = 0. (06 Marks) A rectangular loop of wire in free space joins points A(1, 0, 1) to B(3, 0, 1) to C(3, 0, 4) to D(1, 0, 4) to A. The wire carries a current of 6 mA, flowing in the az direction from B to C. A filamentary current of 15A flows along entire z axis in the az direction.
 - (i) Find 'F' on side BC (ii) Find 'F' on side AB (iii) Find F_{total} on the loop. (06 Marks)

OR

- a. Given a material for which $x_m = 3.1$ and within which $B = 0.4ya_zT$, find:
 - (i) H (ii) μ (iii) μ_r (iv) M (v) J (04 Marks)
 - b. Let $\mu_r = 2$ in region 1 defined by 2x + 3y 4z > 1 while $\mu_r = 5$ in region 2 where 2x + 3y - 4z < 1. In region 1, $H_1 = 50a_x - 30a_x + 20a_z A/m$. Find:
 - (i) H_{N_1} (ii) H_{t_1} (iii) H_{t_2} (iv) H_{N_2} (v) θ_1 the angle between H_1 and a_{N21}
 - Obtain an expression for the total energy stored in a steady magnetic filed in which 'B' is linearly related to 'H'. (04 Marks)

Module-5

- Write Maxwell's equations in integral and point forms. (06 Marks)
 - b. Using Faraday's law, deduce Maxwell's equation, to relate time varying electric and magnetic fields. (06 Marks)
 - Explain the displacement current and displacement current density. (04 Marks)

OR

- Derive wave equations for uniform plane wave in free space. 10 (06 Marks)
 - b. Derive an expression for propagation constant intrinsic impedance and phase velocity for a uniform plane wave propagating in a conducting media. (06 Marks)
 - In free space $E(x,t) = 50\cos(\omega t \beta x)a$, V/m. find the average power crossing a circular area of radius 5m in the plane x = constant. (04 Marks)

* * 2 of 2 * *

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Additional Mathematics - I

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- Find the real and imaginary parts of $\frac{2+i}{3-i}$ and express in the form of x + iy. (05 Marks)
 - Reduce $1 \cos \alpha + j \sin \alpha$ to the modulus amplitude form $[r(\cos \theta + i \sin \theta)]$ by finding r and θ . (06 Marks)
 - c. If $\vec{a} = 4i + 3j + k$ and $\vec{b} = 2i j + 2k$ find the unit vector perpendicular to both the vectors \vec{a} and \vec{b} . Hence show that $\sin \theta = \frac{\sqrt{185}}{3\sqrt{26}}$ where ' θ ' is angle between \vec{a} and \vec{b} .

- a. Find the modulus and amplitude of $\frac{3+i}{1+i}$ (05 Marks)
 - b. Find 'a' such that the vectors 2i j + k, i + 2j 3k and 3i + aj + 5k are coplanar. (06 Marks)
 - Show that for any three vectors $\bar{a}, \bar{b}, \bar{c}$ $[\bar{b} \times \bar{c}, \bar{c} \times \bar{a}, \bar{a} \times \bar{b}] = [\bar{a}, \bar{b}, \bar{c}]^2$. (05 Marks)

- a. Find the nth derivative of sin (5x) cos (2x). b. If y = a cos (log x) + b sin (log x) prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$. (05 Marks)
 - (06 Marks)
 - c. If $u = \sin^{-1} \frac{x+y}{\sqrt{x} \sqrt{y}}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$. (05 Marks)

- a. Expand $e^{\sin x}$ by Maclaurin's series upto the term containing x^4 . (05 Marks)
 - b. Give $u \sin\left(\frac{x}{y}\right)x = e^t$ $y = t^2$ find $\frac{du}{dt}$ as a function of t. (06 Marks)
 - c. If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$ and $\frac{\partial(r,\theta)}{\partial(x,y)}$. (05 Marks)

- a. State reduction formula for $\int \sin^n x \, dx$ and evaluate $\int \sin^9 x \, dx$. (05 Marks)
 - b. Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^{\frac{7}{2}}}$. (06 Marks)
 - c. Evaluate : $\iiint_{x} x^2 yz \, dx \, dy \, dz.$ (05 Marks)

15MATDIP31

OR

6 a. Evaluate: $\int_{0}^{\pi} \sin^{4} x \cos^{6} x dx$.

(05 Marks)

b. Evaluate : $\int_{0}^{5} \int_{0}^{x^2} y(x^2 + y^2) dx dy$.

(06 Marks)

c. Evaluate : $\iint_{0}^{1} \iint_{0}^{2} x^{3}y^{2}z^{3} dx dy dz$.

(05 Marks)

Module-4

- 7 a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t is the time. Find the velocity and acceleration at time t = 1.
 - b. Find the unit normal vector to the surface $xy^3z^2 = 4$ at the point (-1,-1,2). (06 Marks)
 - c. What is solenoid vector field? Demonstrate that vector \overline{F} given by $\overline{F} = 3y^2z^3i + 8x^2\sin(z)j + (x+y)k \text{ is solenoidal.}$ (05 Marks)

OR

- 8 a. Find div F and Curl F if
 - $\overline{F} = (3x^2 3yz)i + (3y^2 3xz)j + (3z^2 3xy)k$

(05 Marks)

- b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- c. Show that the fluid motion $\overrightarrow{V} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. (05 Marks)

Module-5

- 9 Find the solution of:
 - a. $(x^2 + 2e^x)dx + (\cos y y^2)dy = 0$

(05 Marks)

b. $\frac{dy}{dx} = \frac{\frac{y}{x}}{1 + \frac{y}{x}}.$

(06 Marks)

c. $(x^2 - ay)dx + (y^2 - ax)dy = 0$

(05 Marks)

OR

- 10 a. Find the solution of:
 - $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3}{y^3}$

(05 Marks)

b. $(x^2y^3 + \sin x)dx + (x^3y^2 + \cos y)dy = 0$.

(06 Marks)

c. $\cos y \frac{dy}{dx} + \sin y = 1$.

(06Marks)

* * * *